Tackling Climate Change with Machine Learning

Priya L. Donti

Carnegie Mellon University
Climate Change AI

Nov 17, 2021 @ IAPA "Festival of Analytics Goodness"

Climate change

Increasingly severe effects

- Storms, droughts, fires, flooding, extreme heat, etc.
- Uneven impacts

Feedbacks (e.g. albedo, permafrost)

Need net-zero greenhouse gas emissions by 2050 (UN Intergovernmental Panel on Climate Change)

But emissions still increasing each year

What it means to tackle climate change

Climate change is not an on/off switch

Mitigation: Reducing greenhouse gas emissions

Adaptation: Resilience to consequences of climate change

World Greenhouse Gas Emissions in 2016

Total: 49.4 GtCO₂e

Tackling Climate Change with Machine Learning

David Rolnick^{1*}, Priya L. Donti², Lynn H. Kaack³, Kelly Kochanski⁴, Alexandre Lacoste⁵, Kris Sankaran^{6,7}, Andrew Slavin Ross⁸, Nikola Milojevic-Dupont^{9,10}, Natasha Jaques¹¹, Anna Waldman-Brown¹¹, Alexandra Luccioni^{6,7}, Tegan Maharaj^{6,7}, Evan D. Sherwin², S. Karthik Mukkavilli^{6,7}, Konrad P. Kording¹, Carla Gomes¹², Andrew Y. Ng¹³, Demis Hassabis¹⁴, John C. Platt¹⁵, Felix Creutzig^{9,10}, Jennifer Chayes¹⁶, Yoshua Bengio^{6,7}

¹University of Pennsylvania, ²Carnegie Mellon University, ³ETH Zürich, ⁴University of Colorado Boulder, ⁵Element AI, ⁶Mila, ⁷Université de Montréal, ⁸Harvard University,

⁹Mercator Research Institute on Global Commons and Climate Change, ¹⁰Technische Universität Berlin, ¹¹Massachusetts Institute of Technology, ¹²Cornell University, ¹³Stanford University, ¹⁴DeepMind, ¹⁵Google AI, ¹⁶Microsoft Research

Electricity systems Forecasting supply Detecting methane leaks Managing existing technologies Variable low-carbon power Controllable low-carbon power Improving scheduling & flexible demand energy access Forecasting demand

forecasts

Climate prediction

Forest

Remote sensing

Transportation

Predictive maintenance

Enforcing regulation

Vehicle efficiency

Designing for efficiency Detecting loading inefficiency 3-D printing Autonomous vehicles

Alternative fuels Research and development

Electric vehicles

Charging patterns Charge scheduling Congestion management Vehicle-to-grid algorithms

Electricity systems >> Forecasting supply and demand

Need: Scheduling and planning

ML: Short- and medium-term forecasts

 Historical data, physical model outputs, image/video data

Stakeholders: System operators, power producers, demand aggregators, ...

Important considerations:

- Incorporate system physics & goals
- Characterize uncertainty
- Interpretable forecasts

Buildings and cities >> Building energy use optimization

Need: Increased energy efficiency in both existing and new buildings

ML: Smart equipment control (coupled with base measures such as insulation)

- Heating and cooling (HVAC)
- Lighting
- Industrial equipment

Stakeholders: Building managers, city planners, equipment manufacturers, ...

Transportation/Industry >> Optimizing supply chains

Need: Decrease emissions associated with sourcing of goods

ML:

- Cluster suppliers (bundle shipments)
- Improve routing and auctions
- Predict demand (reduce overproduction)

Stakeholders: Logistics management companies, rail/freight companies, ...

Note: Beware the Jevons paradox

Farms and forests >> Gathering land use data

Need: Model emissions and land use for simulation, accounting, policy

ML: Remote sensing

- Data: Satellite, aerial, or drone imagery (color images, LiDAR, etc.)
- Object detection, semantic segmentation, spatio-temporal forecasting, superresolution,...

Stakeholders: Farmers, NGOs, gov programs, agriculture startups, ...

Climate prediction >> Accelerating climate simulations

Need: Efficient, accurate climate simulations

ML: Improve portions of simulations

- Approximate cloud physics through reduced-form models
- Gather data about ice sheets and sea level rise from satellite imagery

Stakeholders: Climate scientists, local governments

Collective decisions >> Analyzing policies

Need: Evidence-based decision-making based on analysis of climate-relevant policies

ML: Natural language processing to classify, cluster, and otherwise analyze text corpora

Stakeholders: National and local governments

Table 5. Error analysis.

SENTENCE	Label	CONTAINS	BERT	STUDENT	EXPERT
It is envisaged that emission reduction will be achieved through the mitigation actions in the sectors.	MITIGATION	MITIGATION	MITIGATION	MITIGATION	MITIGATION
The Steering Committee is the supreme body for decision making and sectoral implementation .	STRATEGY	MITIGATION	STRATEGY	STRATEGY	STRATEGY
The mitigation actions that enhance afforestation are projected to result in the sequestration of 1 mtCO2e annually.	LAND USE	LAND USE	AGRICULTURE	MITIGATION	LAND USE
In the absence of project activity, fossil fuels could be burned in power plants that are connected to the grid.	STRATEGY	EQUITY	Energy	INDUSTRY	Energy
Due to the outbreak of the Ebola Virus the development gains made after a 10-year civil war were rudely reversed.	Environment	No Label	MITIGATION	No Label	No Label

Source: Corringham et al., 2021

Recurring themes

Gathering information (GHG emissions, deforestation, infrastructure, crops)

Forecasting (renewable energy, transportation demand, extreme events)

Improving operational efficiency (heating and cooling, freight, food waste)

Predictive maintenance (methane leaks, resilient infrastructure)

Accelerating scientific experimentation (batteries, electrofuels)

Approximating time-intensive simulations (climate, energy, city planning)

Quick Dive: Electric Power Systems

Many ML applications in the power sector can benefit from the incorporation of **physics**, **hard constraints**, or **domain knowledge**

One mechanism: Implicit layers in neural networks

Paradigms for implicit layers in power systems

Enable decision-driven models (e.g., demand forecasting)

Provide inductive biases (e.g., inverse optimal power flow)

Enforce hard constraints (e.g., robust control via DL; approximating ACOPF)

Inverse optimal power flow

Important Considerations

Machine learning: Strengths & limitations

Machine learning (ML): Group of techniques that automatically extract patterns from (large amounts of) data

STRENGTHS

- **Scaling human insight** by analyzing patterns in large amounts of data
- Optimizing complex systems
- Generating "new" (derived) data from other sources of data
- Integrating with other methods, e.g. domain and physical models

LIMITATIONS

- "Garbage in, garbage out"
 - Does not work on bad or overly limited data
- Inherits biases in data/design/use
 - Not "objective"
- Assumes patterns are persistent
 - Difficulty with e.g. long-term forecasts
- Finds correlation, not causation

Machine learning is not a silver bullet

- Not applicable everywhere
- Where applicable, only one part of the strategy
 - E.g. insulation more important than smart buildings!
- Impactful applications are often not flashy
- Work needs to be driven by end users

Important considerations for deployment

- Sometimes simple methods work
- Rebound effects: Efficiency does not always translate to climate impact
- Equity in scoping, deployment, and access
- Partnerships are key: researchers, implementing industries, end users, policymakers, other affected parties

ML's multi-faceted impact on climate change

ML applications in mitigation & adaptation

ML applications that increase emissions

ML applications w/ uncertain or systemic impacts

Energy use of ML itself

What you can do

General

- Check out Climate Change AI resources & community: www.climatechange.ai
 - Virtual happy hour (fortnightly) and Circle discussion platform
 - Newsletter, tutorials, Wiki, talk recordings
 - Workshops and webinars

Students

- Contact potential mentors & collaborators in the space
- Take classes in multiple disciplines

Professionals

- Join community meetings
- Leverage your network
- Engage with technology-policy interface

Climate Change Al

Catalyzing impactful work at the intersection of climate change and AI

Foundational report on climate change and AI

Resource Wiki w/ datasets and additional resources

+ Forecasting supply and demand

Improving scheduling and flexible demand

Conferences and events

Next workshop (virtual) @ NeurIPS

• Attend: Dec 14

High Levera

Funding programs

Global research funding for impactful projects

Newsletter and community

Webinars and happy hours

Next webinar: Nov 19

Machine learning for carbon capture and sequestration

Next happy hour: Nov 17

low-carbon cities with machine learning

Learn more:

www.climatechange.ai

